Complement to the Holder inequality for multiple integrals. II
نویسندگان
چکیده
This article is the second and final part of author’s work published in previous issue journal. The main result statement that if for functions (...) , where m 2 numbers p1,...,pm ∈ (1, +∞] are such 1/p1 + ... 1/pm < 1 “non-resonant” condition fulfilled (the concept introduced by author from spaces L^p(R^n), p +∞]), then: (...), [a, b] - n-dimensional parallelepiped, constant C > 0 does not depend on (...),1(...)k(...)m some specially constructed normalized spaces. In addition, terms fulfillment non-resonant condition, paper gives a test boundedness integral product when integrating over subset R^n.
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولOn Generalized Holder Inequality
A FAMILY of inequalities concerning inner products of vectors and functions began with Cauchy. The extensions and generalizations later led to the inequalities of Schwarz, Minkowski and Holder. The well known Holder inequality involves the inner product of vectors measured by Minkowski norms. In this paper, another step of extension is taken so that a Holder type inequality may apply to general...
متن کاملMinkowski's Inequality for Integrals
The following inequality is a generalization of Minkowski's inequality C12.4 to double integrals. In some sense it is also a theorem on the change of the order of iterated integrals, but equality is only obtained if p = 1. 13.14 Theorem (Minkowski's inequality for integrals) Let XX and YY be-finite measure spaces and u u X × Y → ¯ be ⊗-measurable. Then X Y uuxx yy dyy p dxx 1/p Y X uuxx yy p dx...
متن کاملAn inequality related to Minkowski type for Sugeno integrals
Article history: Received 2 April 2009 Received in revised form 16 March 2010 Accepted 22 March 2010
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ??????? ?????-?????????????? ????????????
سال: 2022
ISSN: ['1811-9905', '2542-2251']
DOI: https://doi.org/10.21638/spbu01.2022.404